离退休教师
当前位置: 网站首页  > 师资队伍  > 离退休教师  > 正文
彭良才
作者:审核:编辑:发布时间:2017-02-22

                             

基本信息


姓名: 彭良才 出生年月: 1963.3

性别: 硕/博导: 博导

民族: 开设课程: 生物质能学、生物能源工程、高级能源植物学、作物遗传学研究进展

职称: 教授 研究方向: 生物质与生物能源,作物遗传育种

学位: 博士


联系方式

办公电话:027-87281765
电子邮件:lpeng@mail.hzau.edu.cnpengliangcai2007@sina.com

实验室网站:http://bbrc.hzau.edu.cn/


个人简介

彭良才,特聘教授,博导。1983年获华中农业大学农学学士,1987年获中国农科院研究生院农学硕士,1997年获澳大利亚国立大学生化与分子生物学博士。1992-2006年在澳大利亚、美国留学工作期间,先后师从于澳大利亚科学院院士Richard Williamson博士和美国科学院院士Debby Delmer博士,研究论文两次发表在美国科学(Science) 杂志,引用次数1200余次。2006年任best365网页版登录官网教授,所带领的团队包括10余名中青年教师骨干和50名研究生,已培养硕士80名、博士20名。

主要从事植物纤维素生物合成,植物细胞壁代谢,糖代谢与碳源分配,生物质降解与利用等方面的科学研究。此外,还利用现代生物技术和分子育种途径,选育抗逆性强、生物质产量高和品质优良的农作物和能源植物。近几年,在生物技术杂志(Biotechnology Advance, Plant Biotechnology Journal, Biotechnology for Biofuels), 生物能源杂志(Renewable and Sustainable Energy Reviews, Applied Energy, Biomass and Bioenergy, Sustainable Energy & Fuels)、植物生物学杂志(Nucleic Acids Research, Journal of Experimental Botany, Plant and Cell Physiology, Plant Molecular Biology, Planta, Plant Science), 应用化学与材料科学杂志(Green Chemistry, Carbohydrate Polymers, Food Hydrocolloids, Talanta, Cellulose),农业和环境工程杂志(Bioresource Technology, Science of the Total Environment, Plant and Soil, Industry Crops and Products, Waste and Biomass Valorization)上发表学术论文110余篇,其中SCI论文90余篇参编专著2部,获批中国专利8项。


教育经历:
1979/09-1983/08
,华中农业大学,农学系,农学学士

1984/09-1987/09,中国农业科学院,研究生院,农学硕士

1994/03-1997/09,澳大利亚国立大学,生物科学研究院,生物化学与分子生物学博士
           

研究经历:
2006/03-
至今,华中农业大学,植物科技学院特聘教授,生物质与生物能源研究中心主任,作物遗传改良国家重点实验室固定研究员。研究领域:植物纤维素生物合成,植物细胞壁合成代谢,生物质产量与碳源分配,生物质降解与生物能源转化工艺,转基因技术与作物遗传育种等。
2004/06-2006/02
,美国加州大学戴维斯分校,微生物系,博士后研究员/助理研究员。
2000/06-2004/05
,美国农业部植物基因表达中心,加州大学柏克莱分校,植物遗传学研究人员。
1997/09-2000/05
,美国加州大学戴维斯分校,植物生物系,博士后研究人员。
1992/02-1994/02
,澳大利亚国立大学,医学科学研究院,国际科学基金访问学者。
1987/07-1992/02
,中国农业科学院,油料作物研究所,助理研究员。


学术任职:

第一、二、三届国际生物能源与生物技术学术会议主席、中澳生物技术与生物能源双边学术会议主席、中美植物生物学与生物质利用双边学术会议主席、美国加州第三届国际细胞壁生物合成会议大会分会主席。Plant Cell, Plant Physiology, Plant Biotechnology Journal, Plant Science, Planta, Bioresource Technology, Biotechnology for Biofuels, Applied Energy, Bioenergy Research等杂志审稿人;Frontiers in Plant Physiology, Life Science Globe, Agriculture Science, Advances in Forestry Letters 编委。中国植物生理学会第十一届理事会植物生物质与生物能源专业委员会副主任、上海交通大学兼职教授、中科院水生生物研究所学术委员会委员、中国科学院植物种质创新与特色农业重点实验室学术委员会委员、内蒙古大学学术委员会委员、湖南农业大学教育厅植物遗传与分子生物学重点实验室学术委员会委员、江苏省生物质能与酶技术重点实验室学术委员会委员、湖北省生物产业发展专家咨询委员会委员、中国生物质产业网专家执行委员会委员、湖北省循环经济协会专家委员会委员。美国植物生物学家会员、澳大利亚/新西兰细胞生物学会会员、澳大利亚植物生理学家会员、澳大利亚生物化学与分子生物学会会员、中国遗传学会会员。

研究领域与方向:

植物纤维素生物合成和纳米纤维解构与改性,细胞壁代谢调控网络与生物质纳米原料选育,生物质绿色预处理与酶工程,纤维素燃料乙醇与生物质液体燃油,生物质纳米增强复合材料和元件,生物质纳米电化学储存与催化材料和元件,生物碳与纳米碳纤维等。此外,利用现代生物技术和分子育种途径,选育抗逆性强、生物质产量高和品质优良的农作物和能源植物,并设计生物质乙醇和副产品(饲料、造纸、膳食纤维、重金属吸附等)加工工艺与大规模生产工艺流程。


海外留学及回国工作经历:

彭良才博士在国外求学和工作期间,曾师从于国际植物纤维素生物合成领域领军人物, 美国科学院院士 Delmer博士和国际著名植物细胞壁专家, 澳大利亚科学院院士 Williamsons博士,过去十多年该领域两次重要的突破都来自于彭良才参与的研究工作。

作为最主要两名研究人员之一,彭良才博士在澳大利亚国立大学生物学院攻读博士期间,通过筛选和鉴定四个拟南芥(Arabidopsis)的突变体(rsw1, 2, 3, 5)首次发现和鉴定了植物纤维素合酶基因,并提供了充足的生化和遗传证据。彭博士首先通过改进一个便于简易提取和测定微小拟南芥植物细胞壁结构和成份的化学方法,测定了这些拟南芥突变体的纤维素合成严重受阻并同时生产大量的非晶体状纤维素(non-crystalline cellulose)和淀粉(starch)。由于此非晶体状纤维素具有能够有效被纤维素酶(endo-cellulase)分解或被弱酸全部降解成单糖(glucose)的特性,为利用现代生物技术去提高植物纤维素降解并高效转化成生物能源提供了可行性的理论依据。此外,从突变体积累了大量的淀粉现象中,彭博士同时提出了一个全新的关于植物碳源分配(carbon partitioning)通道的理论,即光合作用产生的碳水化合物可以从纤维素中转存于淀粉里,从而可提高淀粉植物(如小麦,玉米,水稻)的淀粉产量。科学杂志刊登其论文,并发表了特别社论,世界最大电视有限通讯网(CNN)澳大利亚人”(Australian)报等称此项发现终于圆了全球科学家几十年的梦想,随后其它有关具体研究结果发表于德国的植物”(Planta)杂志,并申请了国际专利。

随后在美国加州大学戴维斯分校,彭良才博士作为完全独立博士后研究员,通过利用两种独特纤维素抑制剂(DCBCGA),进一步发现了固醇糖甙(SG)分子是棉花纤维素合成的前驱物,并通过改进酵母基因表达系统和建立一个特殊酶反应基质在植物体外的试管中合成了限量棉花纤维素物质,还初步探明了两种抑制剂抑制纤维素合成的独特作用:即CGA主要阻抑纤维素合成酶形成玫瑰状复合体(rosette),导致非晶体状态纤维素的大量积累;而DCB则抑制前驱物(SG)的合成,致使纤维素合成量的直接减少。基于以上研究结果,一个可鉴定植物纤维素生物合成酶和植物细胞壁合成酶超大基因群(大约50基因)功能的实验系统由此建立起来,从而可深入研究纤维素生物合成的分子机理和全部通道,并用现代分子遗传操纵技术去改良作物纤维素品质,增加纤维素的数量。相关三篇论文发表于“Science”“Plant Physiology”杂志,“Science”杂志同期发表了专家评论,称纤维素生物合成机理研究迈出了关键的第一步,至今已被国际知名杂志引用1500余次。回国前,还从事过植物和酵母抗氧化和抗环境胁迫分子机理与信号传导等方面的研究。

回国后组建华中农业大学生物质与生物能源研究中心,所带领的团队包括近十名中青年教师和五十余名研究生。已筛选到水稻生物质突变体近120(T-DNA, EMS and r-Ray),玉米突变体 22(MU)和小麦突变体37(EMS and r-Ray)。依托作物遗传改良国家重点实验室, 组建了作物生物质高通量体外快速分析平台(近红外仪), 作物碳水化合物精细测定平台(气质联用仪), 作物次生代谢网络定量分析平台(液质联用仪), 作物物理机械特征与品质鉴定平台(拉力仪,X-Ray ) 和作物生物质生物信息学分析平台等。近期已初步鉴定出作物细胞壁纤维素表面亚分子沟槽结构(原创发现)及结构形成所需的三大类十多个基因,提出了系统设计重建作物细胞壁结构的假说和三大策略,旨在提高作物生长发育过程中机械强度和抗倒伏能力,增强作物抗病和抗逆能力,并提高作物生物质高效降解转化为生物能源或有效还田或制作其它工业产品。近几年已在国际植物生物学、生物技术、生物能源和化学工程等权威杂志发表论文110余篇,至今所发表论文共被引用次数达3000余次。


科研项目

项目性质 项目名称 起止年限 经费 完成或执行情况

国家自然科学基金 OsCESA479参与水稻次生壁纤维素超微结构形成机理的研究(主持人) 2022-2025 74万人民币 执行中

教育部、国家外国专家局高等学校学科创新引智计划2.0版 作物生物能源物质高效合成和转化分子机理创新引智基地(主持人) 2020-2024 500万人民币 执行中

教育部自主创新基金 作物细胞壁结构特性与生物质高效降解转化分子机理研究 2019-2021 24万人民币 执行中

国家重点研发计划 萃取植物收获物无害化资源化利用关键技术与设备研发(主持人) 2016-2020 352万人民币 已完成

国家自然科学基金 OsCESA4、7、9蛋白P-CR区域在水稻茎秆纤维素合成中的功能研究(主持人) 2017-2020 74万人民币 已完成

教育部、国家外国专家局高等学校学科创新引智计划 作物生物能源物质高效合成和转化分子机理创新引智基地(主持人) 2008-2017 900万人民币 已完成

教育部自主创新基金 植物细胞壁沟槽结构与生物质利用分子机理研究(主持人) 2015-2017 30万人民币 已完成

973计划前期研究专项 新型能源作物细胞壁生物合成分子机理研究(主持人) 2009-2012 70万人民币 已完成

转基因生物新品种培育科技重大专项 棉花纤维品质和水稻抗逆相关的纤维素合成关键基因的克隆与功能验证(主持人) 2009-2012 270万人民币 已完成

教育部人才项目科研启动经费 生物质合成和降解的分子机理(主持人) 2007-2010 200万人民币 已完成

国际科学基金 中国野生油菜种子资源的遗传与生化研究(主持人) 1988-1990 1.5万美元 已完成

国家自然科学基金 油菜种子次生物质结构与代谢的研究(主持人) 1989-1992 2万人民币 已完成

美国自然科学基金 植物/酵母抗氧化耐盐分子机理(第一研究执行人) 2004-2006 30万美元 已完成

美国农业部项目 植物抗氧化抗环境胁迫的遗传操作(第一研究执行人) 2000-2004 40万美元 已完成

美国能源部项目 植物纤维素生物合成(第一研究执行人) 1997-2000 50万美元 已完成


发表的论文及著作

发表论文

备注: #为共同第一作者(Equal contributors);*为通讯作者(Corresponding Author);

IF为当年或五年影响因子;被引次数(Times Cited)截止日期为20217月。

代表性论文

1. Peng, L., Kawagoe, Y., Hogan, P., Delmer, D.* Sitosterol b -1,4-glucoside as primer for cellulose synthesis in plants. Science. 295: 147-150, 2002 (IF: 47.728; Times Cited: 752).

2. Arioli, T., Peng L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., Williamson, R. E.* Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 279: 717-720, 1998 (IF: 47.728; Times Cited: 1529).

3. Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2011 (IF: 8.340; Times Cited: 169).

4. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances. 34(5): 997-1017. 2016 (IF: 14.277; Times Cited: 122).

5. Wu, L.,# Feng, S.,# Deng, J., Yu, B., Wang, Y., He, B., Peng, H., Li, Q., Hu, R.,* Peng, L.* Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chemistry. 21: 4388–4399, 2019 (IF: 10.182; Times Cited: 16).

6. Cheng, L., Wang, L., Wei, L., Wu, Y., Alam, A., Xu, C., Wang, Y., Tu, Y., Peng, L., Xia, T. * Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chemistry. 21: 3693-3700, 2019 (IF: 10.182; Times Cited: 16).

7. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic glucosidase-overproduced rice straw. Green Chemistry. 20: 247, 2018 (IF: 10.182; Times Cited: 51).

8. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175: 82-90, 2016 (IF: 9.746; Times Cited: 115; ESI高被引论文).

9. Madadi, M. Wang, Y., Xu, C., Liu, P., Wang, Y., Xia, T.,Tu, Y., Lin, X., Song, B., Yang, X., Zhu, W., Duanmu, D., Tang, S.*, Peng, L.* Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. Journal of Hazardous Materials, 406:124727, 2021 (IF: 10.588; Times cited:3).

10. Li, F.#, Xie, G.#, Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia ,T., Qu, C., Hu, F., Ragauskas, A., Peng, L.* OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal. 15: 1093-1104, 2017 (IF: 9.803; Times cited: 64).

11. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF: 9.803, Times Cited: 99).

12. Zhang, R., Hu, H., Wang, Y., Hu, Z., Ren, S., Li, J., He, B., Wang, Y., Xia, T., Chen, P., Xie, G., Peng, L.* A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis Journal of Experimental Botany. DOI:10.1093/jxb/eraa044, 2020 (IF: 7.011; Times cited: 5).

13. Hu, H., Zhang, R., Dong, S., Li, Y., Fan, C., Wang, Y., Xia, T., Chen, P., Feng, S., Persson, S., Peng, L.* AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany. 69(5): 1065-1080, 2018 (IF: 7.011; Times cited: 11).

14. Zahoor, Sun, D., Li, Y., Wang, J., Tu, Y., Wang, Y., Hu, Z., Zhou, S., Wang, L., Xie, G., Huang, J., Alam, A., Peng, L.* Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology. 243: 957-965, 2017 (IF: 9.642; Times Cited: 17).

15. Fan, C., Feng, S., Huang, J., Wang, Y., Wu, L., Li, X., Wang, L., Xia, T., Li, J., Cai, X., Peng, L. * AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharifcation and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels. 10: 221, 2017 (IF: 6.444; Times cited: 41).

16. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 30-37, 2013 (IF: 9.642; Times Cited: 104).

17. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1): 58, 2012 (IF: 6.444; Times cited: 225).

18. 王艳婷, 徐正丹, 彭良才*. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学:生命科学. 44(8): 766-774, 2014. (被引次数: 7).

19. 彭良才. 论中国生物能源发展的根本出路[J]. 华中农业大学学报(社科). (2): 1-6, 2011. (被引次数: 68).


2021年论文

1. Madadi, M. Wang, Y., Xu, C., Liu, P., Wang, Y., Xia, T.,Tu, Y., Lin, X., Song, B., Yang, X., Zhu, W., Duanmu, D., Tang, S.*, Peng, L.* Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. Journal of Hazardous Materials, 406:124727, 2021 (IF: 10.588; Times Cited:3).

2. Wang, Y.#, Liu, P.#, Zhang, G., Yang, Q., Lu, J., Xia, T., Peng, L. Wang, Y.* Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing. Renewable and Sustainable Energy Reviews, 137: 110586, 2021 (IF: 14.982; Times Cited: 5).

3. Lv, Z., Liu, F., Zhang, Y., Tu, Y., Chen, P.*, Peng, L.* Ecologically adaptable Populus simonii is specific for recalcitrance-reduced lignocellulose and largely-enhanced enzymatic saccharification among woody plants. GCB Bioenergy, 13: 348-360, 2021 (IF: 6.151; Times Cited:1).

4. Zhang G, Wang, L.,*, Li, X., Bai, S., Xue, Y., Li, Z., Tang, S., Wang, Y., Wang, Y., Hu, Z., Li, P., Peng, L.* Distinctively altered lignin biosynthesis by site-modification of OsCAD2 for enhanced biomass saccharification in rice. GCB Bioenergy. 13: 305-319, 2021 (IF: 6.151; Times Cited:1).

5. Xu, C., Zhu, J., Yu, H., Yu, H., Yang, Y., Fu, Q., Zhan, D., Wang, Y., Wang, H., Zhang, Y., Li, T., El-Sheekh, M.M., Peng, L., Xia, T.* Recyclable cascading of arsenic phytoremediation and lead removal coupled with high bioethanol production using desirable rice straws. Biochemical Engineering Journal, DOI:10.1016/j.bej.2021.107950. 2021 (IF: 3.978; Times cited:2).

6. Liu, P., Li, A., Wang, Y., Cai, Q., Yu, H., Li, Y., Peng, H., Li, Q., Wang, Y., Wei, X., Zhang, R., Tu, Y., Xia, T., Peng, L.* Distinct Miscanthus lignocellulose improves fungus secretingcellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops. Renewable Energy, 174:799-809, 2021. (IF: 8.001)

7. Liu, F., Li, J., Yu, H., Li, Q., Wang, Y., Gao, H., Peng, H, Hu, Z., Wang, H., Zhang, G., Tu, Y., Peng, L.* Optimizing two green-like biomass pretreatments for maximum bioethanol production in desirable banana pseudostem by effectively enhancing cellulose depolymerization and accessibility. Sustainable Energy & Fuels. DOI:10.1039/D1SE00613D, 2021. (IF: 6.367)

8. Xu, C., Xia, T., Wang, J., Yu, L., Wu, L., Zhang, Y., Liu, P., Chen, P., Feng, S., Peng, L.* Selectively desirable rapeseed and corn stalks distinctive for low‑cost bioethanol production and high‑active biosorbents. Waste & Biomass Valorization. 12:795-805, 2021. (IF: 3.703; Times cited: 3)

9. Madadi, M.#, Zhao, K,#, Wang, Y., Wang, Y., Tang, S., Xia, T., Jin, N., Xu, Z., Li, G., Qi, Z., Peng, L., Xiong, Z.* Modified Lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohydrate Polymers. 265:118070, 2021. (IF: 9.381; Times Cited: 1)

10. Gao, H., Wang, Y., Yang, Q., Peng, H, Li, Q., Zhan, D., Wei, H., Lu, H., Baker, M., Mostafa M.El-Sheekh, Qi, Z., Peng, L., Lin, X.* Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maxmize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renewable Energy. 175:1069-1079, 2021. (IF: 8.001)

11. Zafar, A.#, Aftab, M.#, Asif, A., Karadag, A., Peng, L., Celebioglu, H., Afzal, M., Hamid, A. Iqbal, I.* Efficient biomass saccharification using a novel cellobiohydrolase from Clostridium clariflavum for utilization in biofuel industry. RSC Advances. 11:9246-9261, 2021. (IF: 3.840)

12. Xiaoyi Wang, Anbang Wang, Yujia Li, YI XU, Qing Wei, Jiashui Wang, Fei Lin, Deyong Gong, Fei Liu, Yanting Wang, Liangcai Peng, Jingyang LI. A Novel Banana Mutant ‘RF 1’ (Musa Spp. ABB, Pisang Awak subgroup) for Improved Agronomic Traits and Enhanced Cold tolerance and Disease Resistance. Frontiers Plant Science

2020年论文

13. Zhang, R., Hu, H., Wang, Y., Hu, Z., Ren, S., Li, J., He, B., Wang, Y., Xia, T., Chen, P., Xie, G., Peng, L.* A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. Journal of Experimental Botany. 71: 2956-2969, 2020 (IF: 7.011; Times cited: 5).

14. Alam, A., Wang, Y., Liu, F., Kang, H., Tang, S., Wang, Y., Cai, Q., Wang, H., Peng, H., Li, Q., Zeng, Y., Tu, Y., Xia, T., Peng, L.* Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renewable Energy. 159: 1128-1138, 2020 (IF: 8.001; Times cited: ).

15. Sun, D., Yang, Q., Wang, Y., Gao, H., He, M., Lin, X., Lu, J., Wang, Y., Kang, H., Alam, A., Tu, Y., Xia, T., Peng, L.* Distinct mechanisms of enzymatic saccharification and bioethanol conversion enhancement by three surfactants under steam explosion and mild chemical pretreatments in bioenergy Miscanthus. Industrial Crops & Products. 153: 112559, 2020 (IF: 5.645; Times cited: 13).

16. Fan, C., Yu, H., Qin, S., Li, Y., Alam, A., Xu, C., Fan, D., Zhang, Q., Wang, Y., Zhu, W., Peng, L.*, Luo, K.* Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnology for Biofuels. 13: 9, 2020 (IF: 6.444; Times cited: 9).

17. Deng, J., # Zhu, X., # Chen, P., He, B., Tang, S., Zhao, W., Li, X., Zhang, R., Lv, Z., Kang, H., Yu, L.,* Peng, L.* Mechanism of lignocellulose modification and enzyme dis-adsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalks. Sustainable Energy & Fuels. 4: 607-618, 2020 (IF: 6.367; Times cited: 13).

18. Zhang, Y., Xu, C., Lu, J., Yu, H., Zhu, J., Zhou, J., Zhang, X., Liu, F., Wang, Y., Hao, B., Peng, L. Xia, T.* An effective strategy for dual enhancements on bioethanol production and trace metal removal using Miscanthus straws. Industry Crops & Products. 152: 112393, 2020 (IF: 6.367; Times cited: 13).

19. Jing, P., Kong, D., Ji, L., Kong, L., Wang, Y., Peng, L. Xie, G*. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. Plant Journal. DOI: 10.1111/tpj.15074, 2020 (IF: 6.629).

20. Yang, Q., Zhao, W., Liu, J., He, B., Wang, Y., Yang, T., Zhang, G., He, M., Lu, J., Peng, L. Wang, Y.* Quantum dots are conventionally applicable for wide-profiling of wall polymer distribution and destruction in diverse cells of rice. Talanta. 208: 120452, 2020 (IF:  6.057).

21. Zhu, L., Li, P., Sun, T., Kong, M., Li, X., Ali, S., Liu, W., Fan, S., Qiao, J., Li, S., Peng, L., He, B., Jin, M., Xiao, W. Cao, L.*. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresource Technology. DOI:10.1016/j.biotech.2020.123724, 2020 (IF: 9.642; Times cited: 8).

 

2019年论文

22. Wu, L.,# Feng, S.,# Deng, J., Yu, B., Wang, Y., He, B., Peng, H., Li, Q., Hu, R.,* Peng, L.* Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chemistry. 21: 4388–4399, 2019 (IF: 10.182; Times cited: 16).

23. Cheng, L., Wang, L., Wei, L., Wu, Y., Alam, A., Xu, C., Wang, Y., Tu, Y., Peng, L., Xia, T. * Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chemistry. 21: 3693-3700, 2019 (IF: 10.182; Times cited: 16).

24. Alam, A., Zhang, R., Liu, P., Huang, J. Wang, Y., Hu, Z., Madadi, M., Sun, D., Hu, R., Ragauskas, A., Tu, Y., Peng, L.* A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnology for Biofuels. 12: 99, 2019 (IF: 6.444; Times cited: 40).

25. Li, Y., Sun, H., Fan, C., Hu, H., Wu, L., Jin, X., Lv, Z., Wang, Y., Feng, S., Chen, P., Peng, L. * Overproduction of fungus endo-β-1,4-glucanase leads to characteristic lignocellulose modification for largely enhanced biomass enzymatic saccharification and bioethanol production in transgenic rice straws. Cellulose. 26: 8249–8261, 2019 (IF: 5.044; Times Cited: 9).

26. Wu, Y.,# Wang, M.,# Yu, L.,* Tang, S., Xia, T., Kang, H., Xu, C., Gao, H., Madadi, M., Alam, A., Cheng, L.,  Peng, L. * A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks. Science of the Total Environment. 708: 135096, 2019 (IF: 7.963; Times Cited: 6).

27. Fan, C., Wang, G., Wang, Y., Zhang, R., Wang, Y., Feng, S., Luo, K., Peng, L.* Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. International Journal of Molecular Sciences. 20: 4971, 2019 (IF: 5.923; Times Cited: 9).

28. Hu, H.,# Zhang, R.,# Tang, Y., Peng, C., Wu, L., Feng, S., Chen, P., Wang, Y., Du, X.,* Peng, L.* Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. Plant Molecular Biology. 101: 389-401, 2019 (IF: 4.529; Times Cited: 9).

29. Fan, C., Wang, G., Wu, L., Liu, P., Huang, J., Jin, X., Zhang, G., He, Y., Peng, L., Luo, K., Feng, S.* Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydrate Polymers. 232: 115448, 2019 (IF: 9.381; Time Cited: 8).

30. Liu, C., Xiao, Y., Xia, X., Zhao, X., Peng, L., Srinophakun, P., Bai, F. * Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances. 14(1): 650-688, 2019 (IF: 14.277; Times Cited: 115).

31. Li, Q., Xie, B., Wang, Y. *, Wang, Y.*, Peng, L., Li, Y., Li, B., Liu, S. * Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids. 97: 105214, 2019 (IF: 9.147; Times Cited: 24).

32. Huang, J., Xia, T., Li, G., Li, X., Li, Y., Wang, Y., Wang, Y., Chen, Y., Xie, G., Bai, F., Peng, L., Wang, L.* Overproduction of native endo‑β‑1,4‑glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnology for Biofuels. 12: 114, 2019 (IF: 6.444; Times Cited: 35).

33. Guo, X., Liu, Y., Zhang, R., Luo, J., Song, Y., li, J., Wu, K., Peng, L., Liu, Y., Du, Y., Liang, Y., Li, T.* Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil. 447: 1-15, 2019 (IF: 4.192; Times Cited: 4).

34. Li, A., Yang, Q., Li, Y., Zhou, S., Huang, J., Hu, M., Tu, Y., Hao, B., Peng, L., Xia, T. * Mild physical and chemical pretreatments to enhance biomass enzymatic saccharification and bioethanol production form Erianthus arundinaceus. BioResources. 14(1): 650-688, 2019 (IF: 1.614; Times cited: 4).


2018年论文

35. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic rice straws overproducing glucosidase. Green Chemistry. 20: 247, 2018 (IF: 10.182; Times Cited: 51).

36. Hu, H., Zhang. R., Feng, S., Wang, Y., Wang, Y., Fan, C., Li, Y., Liu, Z., Schneider, R., Xia, T., Ding, S., Persson, S., Peng, L.* Three AtCesA6-like members enhance biomass production by promoting cell growth and secondary wall thickenings in Arabidopsis. Plant Biotechnology Journal. 16: 976-988, 2018 (IF: 9.803; Times Cited: 24).

37. Hu, H., Zhang, R., Dong, S., Li, Y., Fan, C., Wang, Y., Xia, T., Chen, P., Feng, S., Persson, S., Peng, L.* AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany. 69(5): 1065-1080, 2018 (IF: 7.011; Times Cited: 11).

38. Cheng, S.#, Yu, H.#, Hu, M., Wu, Y., Cheng, L., Cai, Q., Tu, T., Xia, T., Peng, L.* Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicellulose and pectin and reducing cellulose CrI and DP. Bioresource Technology. 263: 67-74, 2018 (IF: 9.642; Times Cited: 19).

39. Hu, H., Zhang. R., Tao, Z., Li, X., Li, Y., Huang, J., Li, X., Han, X., Feng, S., Zhang, G., Peng, L.* Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant and Cell Physiology. 59(6): 1144-1157, 2018 (IF: 4.978; Times Cited: 17).

40. Jin, X., Lv, Z., Gao, J., Zhang, R., Zheng, T., Yin, P., Li, D., Peng, L., Cao, X., Qin Y., Persson, S., Zheng, B., Chen, P.* AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thalian. Nucleic Acids Research. 47(2): 883-898, 2018 (IF: 16.971; Times Cited: 8).

41. Fan, C., Li, Y., Hu, Z., Hu, H., Wang, G., Li, A., Wang, Y., Tu, Y., Xia, T., Peng, L., Feng, S.* Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice. Plant Biotechnology Journal. 16: 254-263, 2018 (IF: 9.803; Times Cited: 39; ESI高被引论文).

42. Li, Y. #, Zhuo, J. #, Liu, P., Chen, P., Hu, H., Wang, Y., Zhou, S., Tu, Y., Peng, L., Wang, Y.* Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydrate Polymers. 192: 273-281, 2018 (IF: 9.381; Times cited: 14).

43. Hu, M. #, Yu, H. #, Li, Y., Li, A., Cai, Q., Liu, P., Tu, Y., Wang, Y., Hu, R., Hao, B., Peng, L. Xia, T.* Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydrate Polymers. 202: 434-443, 2018 (IF: 9.381; Times cited: 24).

44. Hu, Z., Zhang, G.., Muhammad, A., Samad, R., Wang, Y., Walton, J., He, Y., Peng L., Wang, L*. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw. Scientific Reports. 8: 3636, 2018 (IF: 5.578; Times cited: 9).

45. Li, Y., Zhang, X., Zhang, F., Peng L., Zhang, D., Kondo A., Bai, F., Zhao, X*. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnology for Biofuels. 11: 49, 2018 (IF: 6.444; Times cited: 24).

46. Hu, Z., Zhang, G., Chen, Y., Wang, Y., He, Y., Peng, L., Wang, L*. Determination of lignin monomer contents in rice straw using visible and near-infrared reflectance spectroscopy. Bioresources. 13(2): 3284-3299, 2018 (IF: 1.614; Times cited: 6).


2017年论文

47. Li, F.#, Xie, G.#, Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia ,T., Qu, C., Hu, F., Ragauskas, A., Peng, L.* OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal. 15: 1093-1104, 2017 (IF: 9.803; Times Cited: 64).

48. Fan, C., Feng, S., Huang, J., Wang, Y., Wu, L., Li, X., Wang, L., Xia, T., Li, J., Cai, X., Peng, L. * AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharifcation and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels. 10: 221, 2017 (IF: 6.444; Times cited: 41).

49. Huang, J., Li, Y., Wang, Y., Chen, Y., Liu, M., Wang, Y., Zhang, R., Zhou, S., Li, J., Tu, Y., Hao, B., Peng, L., Xia, T.* A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharifcation in transgenic rice by near-infrared spectroscopy. Biotechnology for Biofuels. 10: 294, 2017 (IF: 6.444; Times Cited: 13).

50. Zahoor, Sun, D., Li, Y., Wang, J., Tu, Y., Wang, Y., Hu, Z., Zhou, S., Wang, L., Xie, G., Huang, J., Alam, A., Peng, L.* Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology. 243: 957-965, 2017 (IF: 9.642; Times Cited: 17).

51. Zahoor, Tu, Y., Wang, L., Xia, T., Sun, D., Zhou, S., Wang, Y., Li, Y., Zhang, H., Zhang, T., Madadi M., Peng L.* Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresource Technology. 243: 319–326, 2017 (IF: 9.642; Times Cited: 34).

52. Sun, D., Alam, A., Tu, Y., Zhou, S., Wang, Y., Xia, T., Huang, J., Li, Y., Zahoor, Wei, Y., Hao, B., Peng, L.* Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresource Technology. 239: 74–81, 2017 (IF: 9.642; Times Cited: 43).

53. Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., Wang, L., Wang, Y., Persson, S.*, Peng, L.* Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics. 18: 55, 2017 (IF: 4.397; Times Cited: 13).

54. Hu, S., Wu, L., Persson, S., Peng L., Feng, S.* Sweet Sorghum and Miscanthus: Two potential dedicated Bioenergy Crops in China. Journal of Integrative Agriculture. 16(6): 1236-1243, 2017 (IF: 2.848; Times Cited: 10).

 

2016论文

55. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 34(5): 997-1017, 2016 (IF: 14.277; Times Cited: 122).

56. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175: 82-90, 2016 (IF: 9.746; Times Cited: 115; ESI高被引论文).

57. Li, A., Wang, R., Li, X., Liu, M., Fan, J., Guo, K., Luo, B., Chen, T., Feng, S., Wang, Y., Wang, B., Peng L., Xia, T.* Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identi cation of cellulose synthase complexes and their potential associated- components in cotton bers. Scientific Reports. 6: 26356, 2016 (IF: 5.578, Times Cited: 7).

58. Li, X., Liao, H., Fan, C., Hu, H., Li, Y., Li, J., Yi, Z., Cai, X., Peng, L., Tu, Y.* Distinct geographical distribution of the Miscanthus accessions with varied biomass enzymatic saccharification. PLoS ONE. 11(8): e0160026, 2016 (IF: 4.411; Times cited: 169; ESI高被引论文).

59. Pei, Y., Li, Y., Zhang, Y., Yu, C., Fu, T., Zou, J., Tu, Y., Peng L., Chen, P.* G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology. 203: 325-333, 2016 (IF: 9.642, Times Cited: 40).

60. Zhang, M., Wei, F., Guo, K., Hu, Z., Li, Y., Xie, G., Wang, Y., Cai, X., Peng, L., Wang, L.*. A novel FC116/BC10 mutation distinctively causes alteration in the expression of the genes for cell wall polymer synthesis in rice. Frontiers in Plant Science. 7: 1366, 2016 (IF: 5.753; Times cited: 8).

61. Dong, S., Hu, H., Wang, Y., Xu, Z., Zha, Y., Cai., X., Peng L., Feng, S.*. An Atpqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana. Journal of Plant Research. 129(5): 899-907, 2016 (IF: 2.629; Times Cited: 10).

62. Wei, X., Zhou, S., Huang, Y., Huang, J., Chen, P., Wang, Y., Zhang, X., Tu, Y., Peng L., Xia, T.* Three fiber crops show distinctive biomass saccharification under physical and chemical pretreatments by altered wall polymer features. Bioresources. 11(1): 2124-37, 2016 (IF: 1.614; Times Cited: 6).

 

2015论文

63. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF: 9.803; Times Cited: 99).

64. Wang, Y.#, Huang, J.#, Li, Y., Xiong, K., Wang, Y., Li, F., Liu, M., Wu, Z., Tu, Y., Peng L.* Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresource Technology. 196: 391-398, 2015 (IF: 9.642, Times Cited: 29).

65. Zhang, J.#, Zou, W.#, Li, Y., Feng, Y., Zhang, H., Wu, Z., Tu, Y., Wang, Y., Cai, X., Peng L.* Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science. 239: 84-91, 2015 (IF: 4.729, Times Cited: 32).

66. Sun, H., Guo, K., Feng, Q., Zou, W., Li, Y., Fan, C., Peng L.* Positive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms. Ecology and Evolution. 5(16): 3413-3420, 2015 (IF: 2.912, Times Cited: 6).

67. Si, S.#, Chen, Y.#, Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng L., Tu, Y.*, Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource Technology. 183: 248-254, 2015 (IF: 9.642; Times Cited: 95).

68. Huang, Y. #, Wei, X. #, Zhou, S., Liu, M., Tu, Y., Li, A., Chen, P., Wang, Y., Zhang, X., Peng L., Xia, T.* Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology. 181:224-230, 2015 (IF: 9.642, Times Cited: 89).

69. Wu, L., Li, M., Huang, J., Zhang, H., Zou, W., Hu, S., Li, Y., Fan, C., Zhang, R., Jing, H., Peng L., Feng, S.* A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum. Bioresource Technology. 177: 118-124, 2015 (IF: 9.642, Times Cited: 26).

2014论文

70. Li, M. #, Si, S. #, Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M., Zhao, C., Tu, Y., Zhou, S., Peng L.* Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technology. 169: 447-454, 2014 (IF: 9.642, Times Cited: 85).

71. Li, M. #, Feng, S. #, Wu, Z., Li, Y., Fan, C., Zhang, R., Zou, W., Tu, Y., Jing, H., Li, S., Peng L.* Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology. 167: 14-23, 2014 (IF: 9.642, Times Cited: 63).

72. Guo, K., Zou, W., Feng, Y., Zhang, M., Zhang, J., Tu, F., Xie, G., Wang, L., Wang, Y., Klie, S., Persson, S., Peng L.* An integrated genomic and metabolomic frame work for cell wall biology in rice.  BMC Genomics. 15: 596, 2014 (IF: 4.397, Times Cited: 27).

73. Jia, J. #, Yu, B. #, Wu, L., Wang, H., Wu, Z., Li, M., Huang, P., Feng, S., Chen, P., Zheng, Y., Peng L.* Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in Corn. PLoS ONE. 9(9): e108449, 2014 (IF: 4.411, Times Cited: 35).

74. Li, X., Xia, T.*, Huang, J., Guo, K., Liu, X., Chen, T., Xu, W., Wang, X., Feng, S., Peng L.* Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. Plant Science. 219-220: 1-8, 2014 (IF: 4.729, Times Cited: 10).

75. Li, Z. #, Zhao, C. #, Zha, Y., Wan, W., Si, S., Liu, F., Zhang, R., Li, F., Yu, B., Yi, Z., Xu, N., Peng L., Li, Q.* The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus. PLoS ONE. 9(8): e105115, 2014 (IF: 4.411, Times Cited: 37).

76. Wu, Z., Hao, H., Zahoor, Tu, Y., Hu, Z., Wei, F., Liu, Y., Zhou, X., Wang, Y., Xie, G., Gao, C., Cai, C., Peng L., Wang, L.* Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass and Bioenergy. 70: 347-355, 2014 (IF: 4.038, Times Cited: 25).

2013论文

77. Wu, Z. #, Zhang, M. #, Wang, L.*, Tu, Y., Zhang, J., Xie, G., Zou, W., Li, F., Guo, K., Li, Q., Gao, C., Peng L.* Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnology for Biofuels. 6: 183, 2013 (IF: 6.444; Times Cited: 100).

78. Li, A., Xia T., Xu W., Chen, T., Li X., Fan, J., Wang, R., Feng, S., Wang, Y., Wang, B., Peng L.* An integrative and comparative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta. 237(6): 1585-1597, 2013 (IF: 4.116; Times Cited: 58).

79. Xie, G., Yang, B., Xu, Z., Li, F., Guo, K., Zhang, M., Wang, L., Zou, W., Wang, Y., Peng L.* Global identification of multiple OsGH9 family members and their involvement in cellulose rystallinity modification in rice. PLoS ONE. 8(1): e50171, 2013 (IF: 4.411; Times Cited: 54).

80. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 30-37, 2013 (IF: 9.642; Times Cited: 104).

81. Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., Tu, Y., Li, Q., Zhou, S., Li, Y., Tu, F., Liu, L., Wang, Y., Jiang, J., Qin, J., Li, S., Li, Q., Jing, H., Zhou, F., Gutterson, N., Peng L.* Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 629-637, 2013 (IF: 9.642; Times Cited: 107).

82. Sun, H., Li, Y., Feng, S., Zou, W., Guo, K., Fan, C., Si, S., Peng L.* Analysis of five rice 4-coumarate: coenzyme a ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical and Biophysical Research Communications. 430(3): 1151-6, 2012 (IF: 3.575; Times Cited: 84).

2012年之前论文

83. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1): 58, 2012 (IF: 6.444; Times Cited: 225).

84. Huang, J., Xia, T., Li, A., Yu, B., Li, Q., Tu, Y., Zhang, W., Yi, Z., Peng L.* A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresource Technology. 121: 274-281, 2012 (IF: 9.642; Times Cited: 72).

85. Xie, G., Peng L.* Genetic engineering of energy crops: A strategy for biofuel production in China. Journal of Integrative Plant Biology. 53: 143-150, 2011 (IF:  7.061; Times Cited: 99).

86. Peng L.*. Gutterson, N. Energy crop and biotechnology for biofuel production- meeting report. Journal of Integrative Plant Biology. 53: 89-92, 2011 (IF: 7.061; Times Cited: 13).

87. Wang, L.#, Guo, K.#, Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X., Peng L.* Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology. 10: 282-298, 2010 (IF: 4.494; Times Cited: 188).

88. Peng, L., Xiang, F., Roberts, 2E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2001 (IF: 8.340; Times Cited: 133).

89. Lane, D., Wiedemeier, A., Peng, L., Hofte, H., Hocart, H., Birch, R., Baskin, T., Arioli, T., Burn, J., Betzner, A., Williamson R. E.* Temperature-sensitive alleles of rsw2 link the KORRIGAN endo-b-1,4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiology. 126: 278-288, 2001 (IF: 8.340; Times Cited: 568).

90. Peng, L., Hocart, C. H., Redmond, J.W., Williamson, R. E.* Fractionation of carbohydrates in Arabidopsis seedling cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta. 211: 406-414, 2000 (IF: 3.687; Times Cited: 275).

中文核心期刊论文

91. 何义涛, 王广亚, 范春芬, 夏涛, 彭良才, 丰胜求*. 植物蔗糖合酶研究进展. 植物生理学报. 56(6): 1165-1176, 2020

92. 范春芬, 王艳婷, 彭良才, 丰胜求*. 植物细胞壁伸展蛋白的功能与利用. 植物生理学报. 54(8): 1279–1287, 2018

93. 佀胜利, 李鸣, 贾军, 李庆, 郝勃, 王艳婷, 彭良才, 涂媛苑*. 芒草酸/碱预处理副产物的生成及对乙醇发酵的影响. 生物质化学工程. 50(3): 41-45, 2016

94. 康永波,李傲,裴岩杰,涂媛苑,周诗光,魏小洋,李庆,郝勃,夏涛,彭良才*. 芒草木质素含量影响里氏木霉产木质纤维素酶.生物技术. 25(6):604-612, 2015

95. 董舒超, 胡慧贞, 彭良才, 丰胜求*.植物百草枯抗性机理研究进展. 植物生理学报. 51(9): 1373-1380, 2015

96. 张会,邹维华,张友兵,张锐,丰胜求,涂媛苑,景海春, 彭良才*. 优质高效甜高粱突变体的筛选与鉴定. 华中农业大学学报. 34(5): 1-6, 2015

97. 易晓燕, 李丰成, 郭凯, 张冉, 李旭凯, 王友梅, 彭良才, 谢国生*. 水稻半纤维素支链合酶GT61家族基因的结构特征和组织表达分析. 中国农业大学学报. (20): 2, 2015

98. 王艳婷, 徐正丹, 彭良才*. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学:生命科学. 44(8): 766-774, 2014

99. 韩笑, 郭凯, 李新新, 刘绪, 王炳锐, 夏涛, 彭良才, 丰胜求*. 拟南芥纤维素合酶基因时空表达模式与功能预测.植物学报. 49(5): 539-547, 2014

100.李旭凯, 彭良才, 王令强*.  Pep_pattern.pl搜索蛋白质序列Motifperl脚本. 华中农业大学学报. 4: 1-6, 2014

101.李旭凯, 郭凯, 彭良才, 王令强*. ChooseMaterials.pl,控制变量挑选实验材料的perl脚本. 生物信息学.11(3): 186-191, 2013

102.冯永清, 邹维华, 李丰成, 张晶, 张会, 谢国生, 涂媛苑, 路铁刚, 彭良才*.特异水稻脆茎突变体生物学特性及生物质降解效率的研究. 中国农业科技导报,15(3): 77-83, 2013.

103.李先良, 李傲, 彭良才, 夏涛*.棉花纤维素合酶复合体蛋白的分离与鉴定. 棉花学报. 25(2): 129-134, 2013

104.刘琳, 俞斌, 黄鹏燕, 贾军, 赵华, 彭俊华, 陈鹏, 彭良才*.不同基因型对芒(Miscanthus sinensis)愈伤组织诱导及分化的影响. 植物学报. 48(2): 192-198, 2013

105.陈婷婷, 李旭凯, 王如意, 彭良才, *.棉花GhPME1GhPME2基因的克隆和表达分析. 中国农业大学学报. 17(5): 7-14, 2012

106.徐雯, 邓宗汉, 陈婷婷, 彭良才, 夏涛*.棉花纤维RNA提取方法的比较及酵母双杂交文库的构建. 中国农学通报. 28(30): 177-183, 2011

107.范建, 刘绪, 范春芬, 黄江锋, 罗兵, 彭良才, 夏涛*.棉花纤维素生物合成相关蛋白的抗体制备. 棉花学报. 24(2): 106-113, 2011

108.陶章生, 徐雯, 张苗苗, 彭良才, 丰胜求*. 拟南芥纤维素合酶的抗体制备与检测. 华中农业大学学报. 31(2): 171-177, 2011

109.张苗苗, 陶章生, 陈婷婷, , 彭良才, 丰胜求*.水稻纤维素合酶多克隆抗体的制备和鉴定. 华中农业大学学报. 30(4): 393-397, 2011

110.彭良才.论中国生物能源发展的根本出路[J]. 华中农业大学学报(社科). (2): 1- 6, 2011

 

著书:

1. Chen, P., and Peng, L*. The diversity of lignocellulosic biomass resources and their evaluations for use as biofuels and chemicals. In: Sun J Z, Ding S Y, Peterson J D, eds. Biological Conversion of Biomass for Fuels and Chemicals: Explorations from Natural Biomass Utilization Systems. Royal Society of Chemistry, 2013, 83-109. ISBN: 978-1-84973-424-0

2. Xie, G., and Peng, L*. Book Chapter entitled “Genetic Engineering of Bioenergy Crops.” In: Wang L J, ed. Sustainable Bioenergy Production. Taylor and Francis. 2014. DOI: 10.1201/b16764-3

专利:

1. Arioli, T., Williamson, R. E., Betzner, A. S., Peng, L. Manipulation of cellulose and/or beta–1,4-glucan. International Patent Application No. PCT/AU97/ 00402, ANU and CSIRO, Australia

2. 彭良才,范春芬,丰胜求,李英,夏涛,王令强,利用伸展蛋白提高水稻抗倒伏能力的方法,授权专利号:ZL201710034163.5,授权日期:2019.11.5.

3. 彭良才,丰胜求,谢国生,王令强,王艳婷,李英,范春芬,孙海燕,胡慧贞,利用外切葡聚糖酶提高水稻秸秆降解转化效率的方法,授权专利号:ZL201611079476.4授权日期:2020.4.10.

4. 彭良才,郝勃,夏涛,涂媛苑,王艳婷,涂芬,熊科,魏小洋,一株利用木糖高效发酵乙醇的转基因工程酿酒酵母SF4,授权专利号:ZL201611019716.1,授权日期:2020.1.24.

5. 王令强,彭良才,谢国生,朱晓博,胡慧贞,一种LR酶可识别和作用的位点对和引物对及质粒构建方法,授权专利号:201710150563.2,授权日期:2020.1.14.

6. 王令强,彭良才,谢国生,胡慧贞,朱晓博,张贵粉,一种LR酶可识别和作用的位点对和引物对及质粒构建方法,授权专利号201710150895.0,授权日期:2020.3.3.

7. 何博洋,何艺涛,赖炎楠,隋宪鑫,丰胜求,彭良才一种高通量检测小样微生物发酵乙醇浓度装置. 授权专利号: ZL 201921107812.0,授权日期:2020.4.17.

8. 何博洋,汪哲,徐梓瑄,赖焱楠,隋宪鑫,高海荣,康恒,王艳婷,夏涛,彭良才一种新型基于纳米气泡石分离和检测乙醇浓度的装置,授权专利号:ZL 202021958979.0,授权日期:2021.5.18.

9. 彭良才,王友梅,王艳婷,涂媛苑,夏涛,汤尚文,丰胜求,山姆,徐成宝,余华,一种促进生物质材料产醇的方法,授权申请号:202010267807.7,授权日期:2021.9.

10. 彭良才,夏涛,王艳婷,余海忠,郝勃,何博洋,魏小洋,涂芬,熊科,一株高效代谢木糖的转基因酿酒酵母工程菌E4及其应用,专利申请号:202110149633.9,申请日期:2021.2.2.


学术会议摘要与报告:

1. 彭良才. (2020). 植物细胞壁给世界一个绿色的未来. 2020全国资源植物保护与种质创新学术研讨会,重庆(特邀报告)

2. Peng, L. (2019). Explore Achilles-heel-like breakpoint of lignocellulose for biofuels and biochemical production-from atomic energy to bioenergy. Bioeconomy Graduate Program BBW ForWerts Workshop, Heidelberg, Germany.(特邀报告)

3. Peng, L. (2019). Using distinct crop straws for in vivo heavy metal phytoremediation and in vitro cellulosic ethanol production under combined mild chemical pretreatments. The 16th International Phytotechnologies Conference, Changsha, China. (特邀报告)

4. Peng, L. (2019). Genetic modification of achilles heel like plant cell wall structure: from nucleus energy to bioenergy. The 3rd Wuhan International Symposium on Biological Signal Transduction. Wuhan, China. (特邀报告)

5. Peng, L. (2018). A native Achilles-heel-like breakpoint of cellulose microfibrils for effective biomass enzymatic saccharification. 1st Plant Cell Wall & Modern Forestry International Symposium, Hangzhou, China. (特邀报告)

6. Peng, L. (2018). A key technology for high cellulosic bioethanol production in the desirable biomass. IEA Bioenergy Task 39 Workshop on Liquid Biofuel and the third Annual Meeting of C-CJCBERI, Beijing, China.(特邀报告)

7. Peng, L. (2018). 利用优质木质纤维生产乙醇关键技术的探索, 2018农学领域分论坛, Beijing, China.(特邀报告)

8. Peng, L. (2018). 解析木质纤维素的软肋(Achilles-heel-like). 2018年生命科学前沿与交叉领域青年论坛, Inner Mongolia, China.(特邀报告)

9. Peng, L. (2018). 解析木质纤维素的软肋(Achilles-heel-like)—从原子能到生物质能. 2018年重庆植物学年会, Chongqing, China.(特邀报告)

10. Peng, L. (2018). A native Achilles-heel-like breakpoint for optimal lignocellose process technology to maximize bioethanol production in bioenergy crops. 第六届生物质能源国际会议(ICBE 2018), Wuhan, China.(特邀报告)

11. Peng, L. (2018). 纤维乙醇关键技术的突破从原子能到生物质能2018中国生物质能源创新发展论坛, Wuhan, China.(特邀报告)

12. Peng, L. (2018). Integrated biotechnology from cellulose biosynthesis to lignocellulose saccharification for bioethanol production. The 2nd International Symposium on Zymomonas mobilis: Metabolic Engineering and Synthetic Biology, INSZMO-2018, Wuhan, China.(特邀报告)

13. Peng, L. (2017). Sucrose synthase distinctively regulates cellulose and callose biosynthesis for improving agronomic traits and activating innate immunity in rice. 6th International Conference on Plant Cell Wall Biology, Dalian, China.(大会报告)

14. Peng, L. (2017). 木质纤维乙醇研究进展与关键技术突破. 北京中科生物燃料乙醇技术和产业化应用研讨会, Beijing, China. (特邀报告)

15. Peng, L. (2016). CESAs and cellulose biosynthesis for biomass quantity and quality. XIV Cell Wall Meeting, Crete, Greece.(大会报告)

16. Peng, L. (2016). Plant cell wall modification for enhancing biomass yield and biofuel production in bioenergy crops. International Conference of Crop Sciences, Beijing, china (分组报告)

17. Peng, L. (2016). Metabolic modification of lignocellulose biomass for biorefinery. International Conference on Metabolic Science, Shanghai, China.(分组报告)

18. Peng, L. (2015). Exploring the fundamental cell wall structure: a key for high biomass production & biofuel applications, International Cereals, Biomass and Biofuels Workshop, Beijing, China.(大会报告)

19. Peng, L. (2014). Exploring the ditches: structure of plant cell walls for plant biology and biomass production. 5th International Conference on Plant Cell Wall Biology, PCWB2014, Queensland, Australia.特邀报告

20. Peng, L. (2014). Exploring ditches structure of plant cell walls for a promising solution to biofuels. 第八届中国新能源国际高峰论坛, Beijing, China.(大会报告)

21. Peng, L. (2014). Exploring the fundamental cell wall structure for biofuel production. Chinese Plant Physiology Society Conference, Guiyang, China.分组报告

22. Peng, L. (2014). A lignocellulose structure model for high biomass enzymatic digestibility and effective ethanol fermentation in grass plants. AFOB Bioenergy and Biorefinery Meeting & Bioenergy and Biorefinery Summit 2014, Jinan, China.大会报告

23. Peng, L. (2014). Genetic modification of bioenergy crops, a key towards biofuels industrialization. Yangling International Agri-science Forum, Yangling, China.大会报告

24. Peng, L. (2013). Systematic analysis of plant cell wall structures towards a fundamental model on biomass production and application in crops. Plant Genomics in China XIV, Nanjing, China. 特邀报告)

25. Peng, L. (2012). Genetic modification of plant cell walls in bioenergy crops. 10th International Congress on Plant Molecular Biology, Jeju, Korea. (特邀报告)

26. Peng, L. (2012). HZAU bioenergy research progress and perspective. The Third International Symposium on Bioenergy and Biotechnology, Wuhan, China. 大会主席)

27. Peng, L. (2012). Research progress of feedstock in China. Sino-US Symposium on Advanced Biofuels, Beijing, China. (特邀报告)

28. Peng, L. (2012). A fundamental structure of plant cell walls reveals the crucial solution for lignocellulosic biofules in grasses. 2012 Low Carbon Forum, Shenzhen, China. (特邀报告)

29. 彭良才. (2012). 中国生物能源发展的根本出路在哪里?华中师范大学研究生生命科学领域专家系列讲座, 武汉, 中国. (特邀报告)

30. 彭良才. (2012). 从核能到生物质能: 探讨中国生物能源发展的根本出路. 湖南农业大学研究生生命科学领域专家系列讲座, 长沙, 中国. (特邀报告)

31. Peng, L. (2011). Distinctive cell wall composition of Miscanthus determines biomass digestibility and ethanol fermentation. 2011 Cell Wall Biosynthesis Conference, Awaji, Japan. (特邀报告)

32. Peng, L. (2011). Fundamental solution for biofuel production in China. 2011 Low Carbon Forum, Shenzhen, China. (特邀报告)

33. 彭良才. (2010). 发展生物质能是人类的笫二次绿色革命? 中科院华南植物园陈焕镛讲座”,广州, 中国. (特邀报告)

34. Peng, L. (2010). HZAU bioenergy research progress and perspective. HZAU bioenergy research progress and perspective. The Second International Symposium on Bioenergy and Biotechnology in Conjunction with Miscanthus Workshop, Wuhan, China. (大会主席)

35. Peng, L. (2009). Identification of plant cell wall regulatory network for energy crop selection. Environment and Energy Conference, Shenzhen, China. (特邀报告)

36. Peng, L. (2009). A way for developing biofuels in China. China-U.S Bioenergy Forum, Beijing, China. (特邀报告)

37. Peng, L. (2009). Energy bioscience and energy crop selection: a way for developing biofuels in China. Sino-Singapore Bioenergy Plants Workshop 2009, Beijing, China. (特邀报告)

38. Peng, L. (2008). Strategy for developing cellulose-ethanol in China. APEC Biofuels Summit 2008, Qingdao, China. (特邀报告)

39. Peng, L. (2008). Optimum conditions and crucial factors for cellulose synthesis in vitro. Third Conference on the Biosynthesis of Plant Cell Walls, San Francisco, USA. (分会主席)

40. Peng, L. (2008). Dissection of cellulose biosynthesis process for potential genetic manipulation of bioenergy plants. International Symposium on Bioenergy and Biotechnology, Wuhan, China. (大会主席)

41. Peng, L. (2008). Biomass research and bioenergy plants. The 108th Pro-seminar of the Eastern Forum of Science and Technology, Shanghai, China. (特邀报告)

42. Peng, L., Wang, B., Xia, T. (2007). Plant cellulose biosynthesis and its application in bioenergy. Chinese Plant Physiology Society Conference, Hebei, China. (特邀报告)

43. Peng, L., Wang, B., Xia, T., Wang, L. (2007). Plant cell wall functional genomics and genetic manipulation for bioenergy crops. Chinese Genetic Society Conference, Zhejing, China. (特邀报告)

44. 彭良才. (2007). 植物细胞壁遗传改良提高农作物秸秆转化为生物能源效率的研究. 可再生能源与农业循环经济论坛, 武汉, 中国. (特邀报告)

45. Large, M., Peng, L., Yamaguchi, T., Yeager, M., Blumwald, E. (2006). Structure/ function analyses of the Arabidopsis vacuolar Na+/H+ antiporters. The 2006 ASPB Conference, Boston, USA.

46. Peng, L., Sen, W., Ow, D. (2002). Expression of fission yeast genes in plants for enhanced metal and oxidative stress. The 2002 ASPB Conference, Denver, USA.

47. Peng, L., Delmer, D., Stoller, A., Kreuz, K. (2000). Specific inhibitors provide insight into the mechanism of cellulose synthesis in cotton fibers. The 2000 ASPP Conference, California, USA.

48. Peng, L., Delmer, D., Stoller, A., Kreuz, K. (1998). A comparison of the effects of two different herbicides on cellulose synthesis in cotton fibers. Plant Polysaccharides Symposium-UCD (abstr. P-27), Davis, CA, USA. (特邀报告)

49. Williamson, R., Peng, L., Rolfe, B., Redmond, J. (1995). Radial swelling mutants of Arabidopsis that are deficient in cellulose synthesis. J. Immunol. Cell Biol., 73: A9.

50. Lane, D., Arioli, T., Betzner, A., Peng, L., Williamson, R. (1995). Radial swelling mutants deficient in cellulose biosynthesis. 35th Annual General Meeting of Australian Society of Plant Physiology, (abstr.), Canberra, Australia.

51. Peng, L., and Wu, X. (1992). The anther culture of interspecific hybrid between Brassica napus and Chinese wild rapeseed. The 2nd Biotechnological Conference of Hubei, January, 99-101, Wuhan, China. (特邀报告)

52. Peng, L., and Chen, H. (1991). The variation of polyphenolics contents and composition in the process of seed formation and development of rapeseed. Chinese Crops Sci. Conference, May, 234, Beijing, China.

53. Peng, L. (1990). A chemical analysis of rapeseed quality in China. Asia-Pacific Regional Seminar on Analysis of Trace Constituents in Foods, November 42, Malaysia.

54. Peng, L., Xu, R., Wu, X. (1989). Studies on accumulation and regulation of glucosinolates in rapeseed. The 2nd Chinese Agri. Biochem. Conference, October 1989, 138-140, Hangzhou, China. (特邀报告)

55. Peng, L. (1986). The agricultural development and modernization of drought regions in China: A comprehensive and economic view. Proceedings of Post-graduate Students Symposium on Enhancing Agricultural Productivities in the Drought Regions of China. The Chinese Agricultural University, 5-10, Beijing, China.

 

best365网页版登录官网

版权所有:Copyright © best365·网页版登录官网(中国)有限公司 - App Platform

地址:湖北省武汉市洪山区狮子山街1号华中农业大学第三综合楼

邮箱:zkbg

网址 www.xinweishipin.com

邮编:430070

Baidu
sogou